Nicotinamide Adenine Dinucleotide Phosphate Oxidase–Mediated Redox Signaling and Vascular Remodeling by 16α-Hydroxyestrone in Human Pulmonary Artery Cells
نویسندگان
چکیده
Estrogen and oxidative stress have been implicated in pulmonary arterial hypertension (PAH). Mechanisms linking these systems are elusive. We hypothesized that estrogen metabolite, 16α-hydroxyestrone (16αOHE1), stimulates nicotinamide adenine dinucleotide phosphate oxidase (Nox)-induced reactive oxygen species (ROS) generation and proliferative responses in human pulmonary artery smooth muscle cells (hPASMCs) and that in PAH aberrant growth signaling promotes vascular remodeling. The pathophysiological significance of estrogen-Nox-dependent processes was studied in female Nox1(-/-) and Nox4(-/-) mice with PAH. PASMCs from control subjects (control hPASMCs) and PAH patients (PAH-hPASMCs) were exposed to estrogen and 16αOHE1 in the presence/absence of inhibitors of Nox, cytochrome P450 1B1, and estrogen receptors. Estrogen, through estrogen receptor-α, increased Nox-derived ROS and redox-sensitive growth in hPASMCs, with greater effects in PAH-hPASMCs versus control hPASMCs. Estrogen effects were inhibited by cytochrome P450 1B1 blockade. 16αOHE1 stimulated transient ROS production in hPASMCs, with sustained responses in PAH-hPASMCs. Basal expression of Nox1/Nox4 was potentiated in PAH-hPASMCs. In hPASMCs, 16αOHE1 increased Nox1 expression, stimulated irreversible oxidation of protein tyrosine phosphatases, decreased nuclear factor erythroid-related factor 2 activity and expression of nuclear factor erythroid-related factor 2-regulated antioxidant genes, and promoted proliferation. This was further amplified in PAH-hPASMCs. Nox1(-/-) but not Nox4(-/-) mice were protected against PAH and vascular remodeling. Our findings demonstrate that in PAH-hPASMCs, 16αOHE1 stimulates redox-sensitive cell growth primarily through Nox1. Supporting this, in vivo studies exhibited protection against pulmonary hypertension and remodeling in Nox1(-/-) mice. This study provides new insights through Nox1/ROS and nuclear factor erythroid-related factor 2 whereby 16αOHE1 influences hPASMC function, which when upregulated may contribute to vascular injury in PAH, particularly important in women.
منابع مشابه
Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation.
OBJECTIVE Endothelial dysfunction is an early manifestation of cigarette smoke (CS) toxicity. We have previously demonstrated that CS impairs nitric oxide (NO)-mediated endothelial function via increased generation of superoxide anion (O2*). In these studies, we investigated whether stable compounds present in CS activate specific pathways responsible for the increased endothelial O2* productio...
متن کاملActivity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension.
BACKGROUND Pulmonary arterial hypertension (PAH) is a hyperproliferative vascular disorder observed predominantly in women. Estrogen is a potent mitogen in human pulmonary artery smooth muscle cells and contributes to PAH in vivo; however, the mechanisms attributed to this causation remain obscure. Curiously, heightened expression of the estrogen-metabolizing enzyme cytochrome P450 1B1 (CYP1B1)...
متن کاملA novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress
Hemodynamic forces regulate embryonic organ development, hematopoiesis, vascular remodeling, and atherogenesis. The mechanosensory stimulus of blood flow initiates a complex network of intracellular pathways, including activation of Rac1 GTPase, establishment of endothelial cell (EC) polarity, and redox signaling. The activity of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase c...
متن کاملKey Role of ROS in the Process of 15-Lipoxygenase/15-Hydroxyeicosatetraenoiccid-Induced Pulmonary Vascular Remodeling in Hypoxia Pulmonary Hypertension
We previously reported that 15-lipoxygenase (15-LO) and its metabolite 15-hydroxyeicosatetraenoic acid (15-HETE) were up-regulated in pulmonary arterial cells from both pulmonary artery hypertension patients and hypoxic rats and that these factors mediated the progression of pulmonary hypertension (PH) by affecting the proliferation and apoptosis of pulmonary arterial (PA) cells. However, the u...
متن کاملDeficiency of NOX1/nicotinamide adenine dinucleotide phosphate, reduced form oxidase leads to pulmonary vascular remodeling.
OBJECTIVE Involvement of reactive oxygen species derived from nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase has been documented in the development of hypoxia-induced model of pulmonary arterial hypertension (PAH). Because the PAH-like phenotype was demonstrated in mice deficient in Nox1 gene (Nox1(-/Y)) raised under normoxia, the aim of this study was to clarify how ...
متن کامل